198 research outputs found

    A method for estimating object detection probability, lateral resolution, and errors in 3D-LiDARs

    Get PDF
    3D-LiDARs are nowadays used for many applications, the success of which certainly depends on the processing of the LiDAR output—the point cloud, PC,—but it also inexorably depends on the quality of the PC data. In this study, we propose an experimental method aimed at allowing estimating the errors and deformations that will statistically affect the LiDAR output — the PC. Taking advantage of the fact that LiDARs sample the surrounding space by observing it along divergent lines, hereinafter referred to as rays, this study proposes a simple method based on the experimental determination of the ray detection probability — the probability that a single ray detects the hit object, or a fraction of it, by adding a point in the point cloud. All other probabilities of interest are derived from such a probability. The proposed method also allows highlighting unexpected errors such as cross-talk. As will be shown by the examples given, due to cross-talk, small objects may be deformed and enlarged on a significantly greater number of points in the PC. Likewise, objects angularly separated by an angle greater than the angular resolution declared by the manufacturer may unexpectedly result in a continuum of points. Such errors may compromise the ability to perform very important tasks such as detection, classification, and tracking of dynamic and static objects, as well as the partition of the scene into drivable and non-drivable regions and the path planning around generic obstacles in 3D space

    Better under stress: Improving bacterial cellulose production by Komagataeibacter xylinus K2G30 (UMCC 2756) using adaptive laboratory evolution

    Get PDF
    Among naturally produced polymers, bacterial cellulose is receiving enormous attention due to remarkable properties, making it suitable for a wide range of industrial applications. However, the low yield, the instability of microbial strains and the limited knowledge of the mechanisms regulating the metabolism of producer strains, limit the large-scale production of bacterial cellulose. In this study, Komagataeibacter xylinus K2G30 was adapted in mannitol based medium, a carbon source that is also available in agri-food wastes. K. xylinus K2G30 was continuously cultured by replacing glucose with mannitol (2% w/v) for 210 days. After a starting lag-phase, in which no changes were observed in the utilization of mannitol and in bacterial cellulose production (cycles 1-25), a constant improvement of the phenotypic performances was observed from cycle 26 to cycle 30, accompanied by an increase in mannitol consumption. At cycle 30, the end-point of the experiment, bacterial cellulose yield increased by 38% in comparision compared to cycle 1. Furthermore, considering the mannitol metabolic pathway, D-fructose is an intermediate in the bioconversion of mannitol to glucose. Based on this consideration, K. xylinus K2G30 was tested in fructose-based medium, obtaining the same trend of bacterial cellulose production observed in mannitol medium. The adaptive laboratory evolution approach used in this study was suitable for the phenotypic improvement of K. xylinus K2G30 in bacterial cellulose production. Metabolic versatility of the strain was confirmed by the increase in bacterial cellulose production from D-fructose-based medium. Moreover, the adaptation on mannitol did not occur at the expense of glucose, confirming the versatility of K2G30 in producing bacterial cellulose from different carbon sources. Results of this study contribute to the knowledge for designing new strategies, as an alternative to the genetic engineering approach, for bacterial cellulose production

    Comparison of VLP-16 and MRS-1000 LiDAR systems with absolute interferometer

    Get PDF
    Nowadays, LiDARs hold a relevant place in providing the environmental sensing required by most ADAS. Promoted by such increasing demand, many new manufacturers are emerging and, new LiDARs are continuously made available on the market. If, on the one hand, the availability of LiDARs with increasing performance and reducing cost has brought significant benefits also promoting the spread of such measuring systems in other areas such as industrial controls and agriculture, on the other, it has made it more difficult to extricate in the immense set of LiDARs present on the market today. In response to this growing need for standards and methods capable of comparing the various LiDARs, many international standards and scientific publications are being produced on the subject. In this paper, we continue our work on LiDARs characterization, focusing our attention on comparing the performances of two of the must popular systems - namely, the MRS 1000 by Sick and the VLP 16 by Velodyne. Starting from the analysis of the warm-up time and stability, such a comparison focused on analyzing the axial error of both systems. Such errors have been estimated by exploiting a custom rail system and an absolute interferometer. The obtained results revealed warm-up times of a few tens of minutes and maximum absolute axial errors of a few centimeters in the range [1.5,21] m

    Analysis, Quantification, and Discussion of the Approximations Introduced by Pulsed 3-D LiDARs

    Get PDF
    Light detection and rangings (LiDARs) are considered essential for the environmental sensing required by most advanced driver assistance system (ADAS), including autonomous driving. This has led to significant investments resulted in the availability of countless measuring systems that are increasingly performing and less expensive. Nevertheless, the extremely high speed of light still leads to a nonnegligible quantization error in the direct time-of-flight (ToF) measure at the base of pulsed LiDARs-the leading technology for automotive applications. Hence, pulsed 3-D LiDARs analyze the surrounding by approximating and deforming it on concentric spheres whose radii are quantized with a quantization step that, for most commercial systems, is on the order of some centimeters. The deformation and error introduced by such quantization can thus he significant. In this study, we point out the approximations and assumptions intrinsic to 3-D LiDARs and propose a measurement procedure that, through the analysis of the fine variations of the target position, allows an accurate investigation of the axial resolution and error-probably among the few limitations still affecting this technology. To the best of our knowledge, this is the first study focused on the detailed analysis of the quantization error in 3-D LiDARs. The proposed method has been tested on one of the most popular 3-D LiDARs, namely the MRS 6000 by Sick. The obtained results revealed for the MRS 6000 a quantization step of about 6 cm (ToF quantization of about 0.4 ns) and an axial error normally distributed with experimental standard deviation of about 30 mm

    LiDARs detected signal and Target distance estimation: measurement errors from Target reflectance and multiple echos

    Get PDF
    The use of LiDARs in automotive is increasingly widespread. In order to operate in a critical environment such as that of mobility, these systems must offer increasingly high performance. In particular, the ability to estimate the position of objects regardless of their reflectance and presence of diffusing backgrounds is a very sought-after feature by manufacturers. In commercial systems various strategies are used to make the measurement as insensitive as possible to these effects, however, it is not possible to fully compensate for the measurement errors caused by them. In this paper, we propose two simple experimental setups to verify the presence of these measurement errors in two scenarios. Moreover, we report the performance of a commercial LiDAR (MRS 6000 by Sick) using certified reflectance standards (Spectralon (R) Diffuse Reflectance Standards, by Labsphere). For this LiDAR, the results obtained show that a logarithmic variation of the reflectance of the target of 1.26-log at a target distance 2.4 m provides incompatible measurements. Furthermore, the presence of a background at a distance shorter than 11 cm, 12 cm and 13 cm respectively with 50 %, 75 % and 99 % reflectance also provides incompatible measurements for a target distance of 1.3 m from the LiDAR

    Evaluation of the Uro-Quick system for antibiotic susceptibility tests of strains collected from intensive care units

    Get PDF
    During the period January–June 2004, 525 pathogens isolated from intensive care units were examined with the new rapid Uro-Quick method for antibiotic susceptibility tests. The results were compared with those obtained by the reference NCCLS methods (disk diffusion or dilution). Antibiotic (in appropriate concentration) was introduced in a vial containing 2 ml of Mueller-Hin ton broth, then 0.5 ml of 5×10 or 106 cells/ml of the strain culture were added. After 3–6 h of incubation, depending on the microorganism studied, the instrument printed the results: no growth and a growth curve similar to that of the untreated control are representative of a susceptible and resistant strain respectively. The following drugs were tested: ciprofloxacin, ampicillin, aztreonam, co-clavulanate, piperacillin/tazobactam, ceftazidime, cefotaxime, cefuroxime, ceftriaxone, imipenem, amikacin, gentamicin, trimethoprim-sulfamethoxazole, clindamycin, erythromycin, linezolid, penicillin, tetracycline, vancomycin, oxacillin. Gram-negative strains tested were 252 and Gram-positive 273: agreement between the two methods ranged from 85.6% (piperacillin/tazobactam) to 98.5% (ciprofloxact) in Gram-negative pathogens, from 90 to 100% in Gram-positive, with the exception of erythromycin (84.2%) against enterococci. On the basis of the present findings the Uro-Quick system appears to be very useful for the rapid detection of antibiotic susceptibility in pathogens collected from intensive care units

    Strange metal electrodynamics across the phase diagram of Bi<sub>2-<i>x</i></sub>Pb<sub><i>x</i></sub>Sr<sub>2-<i>y</i></sub>La<sub><i>y</i></sub>CuO<sub>6+<i>δ</i></sub> cuprates

    Get PDF
    Unlocking the mystery of the strange metal state has become the focal point of high-Tcresearch, not because of its importance for superconductivity, but because it appears to represent a truly novel phase of matter dubbed "quantum supreme matter. " Detected originally through high magnetic field, transport experiments, signatures of this phase have now been uncovered with a variety of probes. Our high resolution optical data of the low-Tccuprate superconductor, Bi2-xPbxSr2-yLayCuO6+delta allows us to probe this phase over a large energy and temperature window. We demonstrate that the optical signatures of the strange metal phase persist throughout the phase diagram. The strange metal signatures in the optical conductivity are twofold: (i) a low energy Drude response with Drude width on the order of temperature and (ii) a high energy conformal tail with a doping dependent power-law exponent. While the Drude weight evolves monotonically throughout the entire doping range studied, the spectral weight contained in the high energy conformal tail appears to be doping and temperature independent. Our analysis further shows that the temperature dependence of the optical conductivity is completely determined by the Drude parameters. Our results indicate that there is no critical doping level inside the superconducting dome where the carrier density starts to change drastically and that the previously observed "return to normalcy " is a consequence of the increasing importance of the Drude component relative to the conformal tail with doping. Importantly, both the doping and temperature dependence of the resistivity are largely determined by the Drude width
    • …
    corecore